de-CH
utf-8
math math-format
Solving ODE
dgl-01-03
multiple
13000
randRange(2,12) randRange(2,12) randRange(2,12) randRange(0,12)

Consider the ODE y'(t) = A\cdot y(t) +B.

Determine {\color{red}a} and {\color{blue}b}, such that the function y with y(t) = C \cdot e^{{\color{red}a} \cdot t} + {\color{blue}b} satisfies this ODE with y(0) = Y0.

a \color{red}a = (A*Y0+B)/C
c \color{blue}b = Y0-C

With y(0) = Y0, it follows that y(0) = C \cdot 1 + {\color{blue}b} = Y0

and {\color{blue}b} = Y0 - C.

To find {\color{red}a}, we differentiate y(t) = C \cdot e^{{\color{red}a} \cdot t} + {\color{blue}b} and substitute y'(t) and y(t) into the ODE.

Then substitute the above {\color{blue}b} into {\color{red}a} \cdot C \cdot e^{{\color{red}a} \cdot t} = A \cdot C \cdot e^{{\color{red}a} \cdot t} + \left( A {\color{blue}b}+ B\right) and set t = 0.

This gives {\color{red}a} \cdot C = A \cdot C+\left( A {\color{blue}b}+ B\right) = A*C + A*Y0 - A*C +B, and eventually {\color{red}a} = \dfrac{A*C + A*Y0 - A*C+B}{C} = fractionReduce(A*Y0+B,C).