de-CH
utf-8
math math-format
Solving IVP
dgl-01-05
multiple
1920
randRange(-6,-2) randRange(2,5) Q*A randRangeExclude(0,12,[-Q]) randRange(2,5) randRangeExclude(1,3,[A]) Y0 + Q

Consdier the ODE y'(t) = A\cdot y(t) +B.

Let y be the solution with y(t) = {\color{teal}C} \cdot e^{{\color{red}a} \cdot t} + {\color{blue}b} and y(0) = Y0.

Determine the value \color{orange}y \left(fractionReduce(L,A) \ln(Y1) \right).

b \color{orange}y \left(fractionReduce(L,A) \ln(Y1)\right) = C*pow(Y1,L)-Q

Calculate {\color{red}a}, {\color{blue}b}, {\color{teal}C} as in one of the other problems:

Substitute the function y(t) = C \cdot e^{{\color{red}a} \cdot t} + {\color{blue}b} into the ODE y'(t) = A\cdot y(t) +B.

Then, y'(t) = \left (C \cdot e^{{\color{red}a} \cdot t} + {\color{blue}b} \right)' = {\color{red}a} \cdot C \cdot e^{{\color{red}a} \cdot t}.

This implies that {\color{red}a} \cdot C \cdot e^{{\color{red}a} \cdot t} = A\cdot \left(C \cdot e^{{\color{red}a} \cdot t} + {\color{blue}b} \right) +B = A \cdot C \cdot e^{{\color{red}a} \cdot t} +\left( A {\color{blue}b}+ B \right).

Since the equation must hold for all real numbers C, it must also be valid for C = 0.

Solve A {\color{blue}b}+ B=0 for {\color{blue}b},to find {\color{blue}b} = fractionReduce(-B,A).

Substitute {\color{blue}b} into {\color{red}a} \cdot C \cdot e^{{\color{red}a} \cdot t} = A \cdot C \cdot e^{{\color{red}a} \cdot t} +\left( A {\color{blue}b}+ B \right) with t = 0.

This yields {\color{red}a} \cdot C \cdot 1 = A \cdot C \cdot 1+\left( A {\color{blue}b}+ B \right) = A \cdot C +0, and finally {\color{red}a} = A.

To find {\color{teal}C}, use the condition y(0) = Y0.

y(0) = Y0 = {\color{teal}C} \cdot e^{{\color{red}A} \cdot 0} + {\color{blue}fractionReduce(-B,A)} , which leads to {\color{teal}C} = Y0 - {\color{blue}fractionReduce(-B,A)} = fractionReduce(Y0*A+B, A).

Therefore, the solution function is: y(t) = C \cdot e^{A \cdot t} - Q.

With t = fractionReduce(L,A) \ln(Y1) this gives \color{orange}y \left(fractionReduce(L,A) \ln(Y1) \right) = C*pow(Y1,L)-Q.