de-CH
utf-8
math math-format
Homogeneous Solution
dgl-02-01
multiple
190
randRange(1,5) randRange(1,5) randRange(1,5) randRange(1,5)

Consider the ODE y'(x) = p(x) \cdot y(x) with p(x) = 3x^2 - 2*(A+B+C)x + A*B+A*C + B*C and y(0) = 1.

Determine the value \color{orange}\ln \left( y(L) \right) of the solution of the IVP.

x \color{orange}\ln \left( y(L) \right) = pow(L,3) -(A+B+C)*L*L+(A*B+A*C+B*C)*L

The general solution of a linear homogeneous ODE takes the form y'(x) = p(x) \cdot y(x) is y(x) = K \cdot e^{P(x)}.

Here, K is a constant and \displaystyle P(x) \in \int p(x) dx is an antiderivative of p.

We have \displaystyle P(x) \in \int p(x) dx = \int \left( 3x^2 - 2*(A+B+C)x + A*B+A*C + B*C \right) dx= x^3 -(A+B+C)x^2+A*B+A*C+B*Cx+C.

The integration constant C is determined by the initial condition y(0) = 1.

Thus C = 0 and y(x) = e^{x^3 -(A+B+C)x^2+A*B+A*C+B*Cx}.

Substitution yields {\color{orange}\ln \left( y(L) \right)} = \ln \left(e^{L^3 -(A+B+C)\cdot L^2+A*B+A*C+B*C\cdot L} \right) = pow(L,3) -(A+B+C)*L*L+(A*B+A*C+B*C)*L.