de-CH
utf-8
math math-format
Inhomogeneous Solution
dgl-03-02
multiple
1800
randRange(-10,-1) randRangeExclude(1,10,[-A]) randRangeNonZero(-10,10) A+B

Consider the ODE y'(x) = -\dfrac{y(x)}{x - A} + \dfrac{x}{x -A} with y(0) = D and x >A.

Determine the value \color{orange} y(C) of the solution of the IVP.

x \color{orange} y(C) = (0.5 * C*C - A*D)/(C-A)

We first determine the general solution of the associated homogeneous differential equation y'(x) = p(x)\cdot y(x).

It is given by y(x) = K \cdot e^{P(x)} with a constant K and a primitive \displaystyle P(x) \in \int p(x) dx of p.

In the case at hand, we have \displaystyle P(x) \in \int p(x) dx = \int -\dfrac{1}{x - A} dx= -\ln |x -A| =- \ln (x -A)+ constant, as x >A.

Substituting this gives y(x) = K \cdot e^{P(x)} = K \cdot e^{- \ln (x -A)} = K \cdot \dfrac{1}{x -A}.

The integration constant K is determined by the initial condition y(0) = D and determined together with all other constnads in the end.

Using the variation of constants approach, we get the general solution of the inhomogeous ODE \displaystyle y(x) = \left( \int e^{-P(x)} \cdot q(x) dx + C \right) e^{P(x)}.

Compute e^{-P(x)} \cdot q(x) = e^{-(- \ln (x -A))} \cdot \dfrac{x}{x -A} = (x -A) \dfrac{x}{x -A} = x

and \displaystyle \int e^{-P(x)} \cdot q(x) dx = \int x dx = \frac 12 x^2 +C .

The general solution of the inhomogeous ODE is \displaystyle y(x) = \left( \frac 12 x^2 +C \right) e^{P(x)} = \left( \frac 12 x^2 +C \right) \frac{1}{x -A} = \frac{\frac 12 x^2 +C }{x -A}.

As y(0) = D = \dfrac{0 +C }{0 -A} it follows that C = -A*D.

Eventually, the solution of the IVP is \displaystyle y(x) = \frac{\frac 12 x^2 + -A*D}{x -A} .

Substitution gives {\color{orange} y(C)} = fractionReduce(0.5 * C*C - A*D,C-A) .