Consider the ODE
y'(x) = -\dfrac{y(x)}{x - A} -By(x) + \dfrac{e^{-Bx}}{x -A}
with y(0) = D
and x >A
.
Determine the solution \color{orange} y(x)
of the IVP.
\color{orange} y(x)
=
\frac{x + -A*D}{e^{Bx}(x -A)}
We first determine the general solution of the corresponding homogeneous ODE y'(x) = p(x)\cdot y(x)
.
Here, after factoring, p(x) = -\dfrac{1}{x - A} -B
.
Use this to find y(x) = K \cdot e^{P(x)}
with constant K
and an antiderivative
\displaystyle P(x) \in \int p(x) dx
of p
.
Since x >A
, we have that \displaystyle P(x) \in \int p(x) dx =
\int \left(-\dfrac{1}{x - A} -B \right)dx=
-\ln |x -A| - Bx =- \ln (x -A) - Bx +
.
Substituting this yields
y(x) = K \cdot e^{P(x)} = K \cdot e^{- \ln (x -A) - Bx} = K \cdot \dfrac{1}{x -A}
\cdot e^{ - Bx}
.
The integration constant
K
is determined along with the remaining constants by the initial condition y(0) = D
in the end.
Using the variation of parameters approach, the general solution of the inhomogeneous ODE
\displaystyle y(x) = \left( \int e^{-P(x)} \cdot q(x) dx + C \right) e^{P(x)}
is.
Compute e^{-P(x)} \cdot q(x)
= e^{-(- \ln (x -A) - Bx )} \cdot \dfrac{e^{-Bx}}{x -A}
= (x -A) e^{Bx}\cdot \dfrac{e^{-Bx}}{x -A} = 1
and \displaystyle \int e^{-P(x)} \cdot q(x) dx = \int 1 dx = x +C
.
The inhomogeneous solution is therefore
\displaystyle y(x) = \left( x +C \right) e^{P(x)} = \left( x +C \right) \cdot \dfrac{1}{x -A}
\cdot e^{ - Bx} = \frac{ x +C }{e^{Bx}(x -A)}.
Using
y(0) = D = \dfrac{0 +C }{1 \cdot (0 -A)}
yields C = -A*D
.
In conclusion, the solution of the IVP reads \displaystyle
{\color{orange}y(x) = \frac{x + -A*D}{e^{Bx}(x -A)}}
.