Given y'(t) = C·t + A·y(t) +B
with
a solution of the form y(t) = {\color{red}a} · t + {\color{blue}b}
.
Determine {\color{red}a}
and {\color{blue}b}
.
\color{red}a =
P
\color{blue}b =
Q
Substitute the function y(t) = {\color{red}a} · t + {\color{blue}b}
into the ODE
y'(t) = C·t + A·y(t) +B
.
We obtain y'(t) = \left({\color{red}a} · t + {\color{blue}b}\right)' = {\color{red}a} = C·t + A·({\color{red}a} · t + {\color{blue}b}) +B.
To compare the left- and right-hand side, we rearrange the right-hand side and get
0 · t + {\color{red}a} = (A {\color{red}a} + C) · t + (A {\color{blue}b} +B).
For this to hold for all t
, the two equations must be satisfied for the coefficients:
0 = A {\color{red}a}+ C
and {\color{red}a} = A {\color{blue}b} +B.
We conclude {\color{red}a} = P
and {\color{blue}b} = Q.