de-CH
utf-8
math math-format
Special Solution: Linear Inhomogeneity
dgl-04-03
multiple
2548
randRangeExclude(-8,8,[-1,0,1]) randRangeExclude(-8,8,[-1,0,1]) randRangeExclude(-8,8,[-1,0,1,P]) P-A*Q -P*A

Given y'(t) = C·t + A·y(t) +B with a solution of the form y(t) = {\color{red}a} · t + {\color{blue}b}.

Determine {\color{red}a} and {\color{blue}b}.

a \color{red}a = P
c \color{blue}b = Q

Substitute the function y(t) = {\color{red}a} · t + {\color{blue}b} into the ODE y'(t) = C·t + A·y(t) +B.

We obtain y'(t) = \left({\color{red}a} · t + {\color{blue}b}\right)' = {\color{red}a} = C·t + A·({\color{red}a} · t + {\color{blue}b}) +B.

To compare the left- and right-hand side, we rearrange the right-hand side and get

0 · t + {\color{red}a} = (A {\color{red}a} + C) · t + (A {\color{blue}b} +B).

For this to hold for all t, the two equations must be satisfied for the coefficients:

0 = A {\color{red}a}+ C and {\color{red}a} = A {\color{blue}b} +B.

We conclude {\color{red}a} = P and {\color{blue}b} = Q.