de-CH
utf-8
math math-format
2nd Order Differential Equations
dgl-04-01
multiple
540
randRange(2, 12) randRangeExclude(2, 12,[L1]) L1+L2 L1*L2 randRange(1,5)

Consider the ODE y''(t) - T\cdot y'(t) +D\cdot y(t) = 0

with the initial conditions y(0) = 0 und y'(0) =L2 - L1.

Determine for the solution of the IVP y the value

l \color{orange}\ln \left(- \dfrac{y(K)}{y(-K)}\right) = K*(L1+L2)

First use the characteristic equation \lambda^2 - T\cdot \lambda +D = 0 to find the general solution of the ODE.

The two roots of the quadratic equation are \lambda_1 = L1 and \lambda_2 = L2.

Thus, the general solution is y(t) = {\color{blue}C_1} \cdot e^{L1 \cdot t} + {\color{blue}C_2} \cdot e^{L2 \cdot t}.

The constants {\color{blue}C_1} and {\color{blue}C_2} can be found with the initial conditions y(0) = 0 und y'(0) =L2 - L1.

Using y(0) = 0 yields C_1 + C_2 = 0 and \color{teal}C_1 = - C_2.

With y'(0) =L2 - L1 we get the relation \color{purple}L1 \cdot C_1 + L2 \cdot C_2 = L2 - L1.

Together with \color{teal}C_1 = - C_2 in \color{purple}L1 \cdot C_1 + L2 \cdot C_2 = L2 - L1, we deduce that \color{blue}C_2 = 1 and thus \color{blue}C_1= -1.

The particular solution is y(t) = e^{L2 \cdot t} - e^{L1 \cdot t} with values y(K) = e^{L2 \cdot K} - e^{L1 \cdot K} = e^{L2*K} - e^{L1*K} and

y(-K) = e^{L2 \cdot negParens(-K)} - e^{L1 \cdot negParens(-K)} = e^{-L2*K} - e^{-L1*K} = \dfrac{e^{L1*K} - e^{L2*K}}{e^{L1*K + L2*K}}.

With these valued we first calculate - \dfrac{y(K)}{y(-K)} =- \left(-e^{L1*K + L2*K} \right) = e^{L1*K + L2*K} = e^{(L1+L2)*K}

and thus arrive at \color{orange}\ln \left(- \dfrac{y(K)}{y(-K)}\right) = K*(L1+L2).