de-CH
utf-8
math math-format
2nd Order ODE: General Solution (Complex)
dgl-04-02
multiple
82
randRangeExclude(-5,5, [-1,0]) 2*N+1 randRange(2,24) T*T- 4*D

Consider the ODE y''(t) + T\cdot y'(t) +D\cdot y(t) = 0.

Determine the general solution y with y(t) and constants A und B, where A should precede B in the sense that A.

Use cpx y(t) = e^{-T/2*t} (A * \sqrt{-K/4}*t) + B * \sin(\sqrt{-K/4} *t))

Use the characteristic equation to get the general solution of the ODE \lambda^2 + T\cdot \lambda +D = 0.

The two (complex) roots of the quadratic equation are \lambda_{1,2} = \dfrac12 (-T \pm formattedSquareRootOf(-K) i).

Thus, the general solution is y(t) = e^{(-T/2) t} \left(A \cos(\beta t) + B \sin(\beta t) \right) with \beta = \dfrac{formattedSquareRootOf(-K)}2.