de-CH
utf-8
math math-format
Finding Stationary Solutions
dgl-05-01
set
2000
randRangeExclude(-8, 8, [-1,0,1] ) randRangeExclude(-8, 8, [-1,0,1] )
randRangeExclude(-8, 8, [-1,0,1] )

Determine the stationary solutions of the ODE y'= Cy^3 - (A+B)*C y^2 + A*B*Cy .

A
B
0
{\color{blue}y_{\infty,1}} =
{\color{red}y_{\infty,2}} =
{\color{black}y_{\infty,3}} =

For a stationary solution {\color{orange}y_{\infty}}, we must have {\color{orange}y'_{\infty}} = 0.

We therefore need to find the zeros of the right-hand side of the ODE Cy^3 - (A+B)*C y^2 + A*B*Cy.

By factoring, we obtain Cy_{\infty} (y_{\infty}^2 - (A+B) y_{\infty} + A*B) = 0. This gives us {\color{orange}y_{\infty}} = 0 as a first solution.

The two additional nonzero solutions are the roots of the term in the brackets.

The solutions of the quadratic equation y_{\infty}^2 - (A+B) y_{\infty} + A*B = 0 can be found directly using Vieta's formulas:

For y_{\infty}^2 +-A-B y_{\infty} +A*B = (y_{\infty} - {\color{blue}y_{\infty,1}} ) (y_{\infty} -{\color{red}y_{\infty,2}}) one gets {\color{blue}y_{\infty,1}} + {\color{red}y_{\infty,2}} = {\color{orange}A+B} und {\color{blue}y_{\infty,1}} \cdot {\color{red}y_{\infty,2}} = {\color{teal}A*B}.

We thus get {\color{blue}y_{\infty,1}} = A und {\color{red}y_{\infty,2}}= B.