Let f
be the solution of the IVP
y'(x) = (V x + W) \left(A y(x) +
B\right)^{\frac{N}{M}}
with
f(0) = Y0
.
Determine the value f(X1)
.
f(X1)
=
Snum
At first, we determine the solution f
with separation of variables.
We rewrite the ODE as y'(x) = \dfrac{dy}{dx} =
(V x + W) \left(A y(x) + B\right)^{ K}\implies
\left(A y(x) + B\right)^{-K} \ dy = (V x + W) \ dx.
Now we look for antiderivatives \displaystyle
\int \left(A y(x) + B\right)^{-K} \ dy = \int (V x + W) \ dx =
fractionReduce(V,2)x^2 + W x + C.
For the left side \displaystyle
\int \left(A y(x) + B\right)^{-K} \ dy
use e.g. substitution to get as primitive \displaystyle
fractionReduce(M, A) (A y(x) + B)^{KK}.
After equating \displaystyle
fractionReduce(M, A) (A y(x) + B)^{KK} = fractionReduce(V,2)x^2 + W x + C
we first determine the constant C=0
, applying x = 0
and
the given initial condition f(0) = Y0
.
Finally, we solve the equation for y(x)
:
\displaystyle
fractionReduce(M, A) (A y(x) + B)^{KK} = fractionReduce(V,2)x^2 + W x \implies
(A y(x) + B)^{KK} = fractionReduce(A*V,2*M)x^2 + fractionReduce(W*A,M) x
\implies
y(x) =
\frac 1{A}\left(fractionReduce(A*V,2*M)x^2 +
fractionReduce(W*A,M) x \right)^{M} - fractionReduce(B,A).
We then substitute X1
into this function and obtain as the solution f(X1) = S
.