Determine the solution of the IVP
y'(x) = (V x + W) \left(A y(x) + B\right)^{\frac{N}{M}}
with
f(0) = Y0
.
f(x)
=
1/A * (fractionReduce(A*V,2*M) * x^2 +
fractionReduce(W*A,M) x )^{M} - fractionReduce(B,A)
At first, we determine the solution f
with separation of variables.
We rewrite the ODE as y'(x) = \dfrac{dy}{dx} =
(V x + W) \left(A y(x) + B\right)^{ K}\implies
\left(A y(x) + B\right)^{-K} \ dy = (V x + W) \ dx.
Now we look for antiderivatives \displaystyle
\int \left(A y(x) + B\right)^{-K} \ dy = \int (V x + W) \ dx =
fractionReduce(V,2)x^2 + W x + C.
For the left-hand side \displaystyle
\int \left(A y(x) + B\right)^{-K} \ dy
use e.g. substitution to get as primitive \displaystyle
fractionReduce(M, A) (A y(x) + B)^{KK}.
After equating \displaystyle
fractionReduce(M, A) (A y(x) + B)^{KK} = fractionReduce(V,2)x^2 + W x + C
we get the constant C=0
, setting x = 0
and using the initial value
f(0) = Y0
.
To get the term for y(x)
we try to isolate it:
\displaystyle
fractionReduce(M, A) (A y(x) + B)^{KK} = fractionReduce(V,2)x^2 + W x \implies
(A y(x) + B)^{KK} = fractionReduce(A*V,2*M)x^2 + fractionReduce(W*A,M) x
\implies
y(x) =
fractionReduce(1,A)\left(fractionReduce(A*V,2*M)x^2 +
fractionReduce(W*A,M) x \right)^{M} - fractionReduce(B,A).