Determine the general solution of the ODE
y'(x) = \dfrac{x}{\sqrt{B + x^2}}(y(x) + A)^2
and the constant \color{red}C
in case of the initial value y(0) = 0
.
y(x)
=
- \frac{1}{\sqrt{B + x^2} +C} - A
\color{red}C
=
-sqrt(B) - 1/A
We look for the general solution using the separation of variables.
We rewrite the ODE as: y'(x) = \dfrac{dy}{dx} = \dfrac{x}{\sqrt{B + x^2}}(y(x) + A)^2
\implies \dfrac{1}{(y(x) + A)^2} \ dy = \dfrac{x}{\sqrt{B + x^2}} \ dx.
Now we look for antiderivatives \displaystyle
\int\dfrac{1}{(y(x) + A)^2} \ dy
= - \dfrac{1}{(y(x) + A)} = \int \dfrac{x}{\sqrt{B + x^2}} \ dx
= \sqrt{B + x^2} + C,
by using substution on the right-hand side.
We want to solve the equation for y(x)
, i.e. try to isolate it:
Taking the reciprocal and subtracting terms yields \displaystyle
y(x) =- \dfrac{1}{\sqrt{B + x^2} +{\color{red}C}} - A.
For the constant C
we set x=0
and use the inital value y(0) = 0
:
\displaystyle
y(0) = 0 = - \dfrac{1}{\sqrt{B} +C} - A \implies {\color{red} C = - \sqrt{B} -
\frac{1}{A}} =
-sqrt(B)-1/A
(at least approximately . . . .)