de-CH
utf-8
math math-format
Separation of Variables: Solution Function
dgl-06-04
multiple
8748
randRangeNonZero(-6, 6) randRangeExclude(-6, 6,[-1,0,1]) randRangeExclude(-6, 6,[-1,0,1]) randRangeExclude(-6, 6,[-1,0,1])

Determine the general solution of the ODE y'(x) = \dfrac{2*Bx + C}{Bx^2 + Cx + D}(y(x) + A)^2 and the constant \color{red}C in case of the initial value y(0) = 0.

x y(x) = -\frac{1}{\ln |Bx^2 + Cx +D| + C} - A
c \color{red}C = -\lnabs(D) - 1/A

To get the general solution we apply the separation of variables.

We rewrite the ODE as: y'(x) = \dfrac{dy}{dx} = \dfrac{2*Bx + C}{Bx^2 + Cx + D}(y(x) + A)^2 \implies \dfrac{1}{(y(x) + A)^2} \ dy = \dfrac{2*Bx + C}{Bx^2 + Cx +D} \ dx.

Now we look for antiderivatives \displaystyle \int \dfrac{1}{(y(x) + A)^2} \ dy = - \dfrac{1}{(y(x) + A)} = \int\dfrac{2*Bx + C}{Bx^2 + Cx +D} \ dx = \ln|Bx^2 + Cx +D| + C.

For the right-hand side use \displaystyle \int\dfrac{f'(x)}{f(x)} \ dx = \ln| f(x)| + C.

It remains to solve \displaystyle = - \dfrac{1}{(y(x) + A)} = \ln |Bx^2 + Cx +D| + C , i.e. to isolate y(x):

Taking the reciprocal and subtracting gives \displaystyle y(x) = -\dfrac{1}{\ln |Bx^2 + Cx +D| + C} - A.

The constant C is obtained by setting x=0 and using the initial value y(0) = 0:

\displaystyle y(0) = 0 = - \dfrac{1}{\ln |D| +C} - A = - \dfrac{1}{\ln (abs(D)) +C} - A \implies {\color{red} C = - \ln(abs(D)) - fractionReduce(1,A)}.