de-CH
utf-8
math math-format
Separation of Variables: Solution Function
dgl-06-04a
multiple
1890
randRangeNonZero(-9, 9) randRange(2,9) randRangeExclude(-9, 9,[-1,0,1])

Determine the general solution of the ODE y'(x) = \dfrac{C}{Cx + D}(y(x) + A)^2 and the constant \color{red}C for the initial value y(0) = 0 .

x y(x) = -\frac{1}{\ln |Cx +D| + C} - A
c \color{red}C = -\lnabs(D) - 1/A

We look for the general solution using the separation of variables.

We rewrite the ODE as: y'(x) = \dfrac{dy}{dx} = \dfrac{C}{Cx + D}(y(x) + A)^2 \implies \dfrac{1}{(y(x) + A)^2} \ dy = \dfrac{C}{Cx +D} \ dx.

Now we look for antiderivatives \displaystyle \int \dfrac{1}{(y(x) + A)^2} \ dy = - \dfrac{1}{(y(x) + A)} = \int\dfrac{C}{Cx +D} \ dx = \ln|Cx +D| + C.

For the right-hand side we use \displaystyle \int\dfrac{f'(x)}{f(x)} \ dx = \ln| f(x)| + C.

It remains to solve \displaystyle = - \dfrac{1}{(y(x) + A)} = \ln |Cx +D| + C , i.e. to isolate y(x):

With the reciprocal and subtraction we find \displaystyle y(x) = -\dfrac{1}{\ln |Cx +D| + C} - A.

For the constant C we set x=0 and use the inital value y(0) = 0:

\displaystyle y(0) = 0 = - \dfrac{1}{\ln |D| +C} - A = - \dfrac{1}{\ln (abs(D)) +C} - A \implies {\color{red} C = - \ln(abs(D)) - fractionReduce(1,A)}.