Below we see the slope field of an ODE
y' = F(y)
with three stationary solutions.
Which convergence behavior does the solution \color{orange}y
with \color{orange}y(X) = Y
exhibit?
\lim\limits_{t \to + \infty} = + \infty
\lim\limits_{t \to + \infty} = - \infty
\lim\limits_{t \to + \infty} = A
\lim\limits_{t \to + \infty} = C
\lim\limits_{t \to + \infty} = B
\lim\limits_{t \to + \infty} = - \infty
\lim\limits_{t \to + \infty} = A
\lim\limits_{t \to + \infty} = B
\lim\limits_{t \to + \infty} = C
\lim\limits_{t \to + \infty} = + \infty
\lim\limits_{t \to + \infty} = A
\lim\limits_{t \to + \infty} = B
\lim\limits_{t \to + \infty} = C
\lim\limits_{t \to + \infty} = - \infty
\lim\limits_{t \to + \infty} = + \infty
\lim\limits_{t \to + \infty} = B
\lim\limits_{t \to + \infty} = C
\lim\limits_{t \to + \infty} = - \infty
\lim\limits_{t \to + \infty} = + \infty
\lim\limits_{t \to + \infty} = A
\lim\limits_{t \to + \infty} = B
\lim\limits_{t \to + \infty} = - \infty
\lim\limits_{t \to + \infty} = + \infty
\lim\limits_{t \to + \infty} = A
\lim\limits_{t \to + \infty} = C
At a given point (x_0,y_0)
, the slope field shows a tiny piece of the tangent
of a solution of the ODE, on which (x_0,y_0)
lies.
We observe that y_{\infty, 1}=C,
y_{\infty, 2}=A, y_{\infty, 3}=B
are the three stationary solutions.
Those provide candidates for the limit \lim\limits_{t \to + \infty}
.
Since {\color{teal}y(X) = Y} > B
, each tangent piece
has positive slope, i.e.
\lim\limits_{t \to + \infty} = + \infty
.
Since {\color{teal}y(X) = Y} < C
, each tangent piece
has negative slope, i.e.
\lim\limits_{t \to + \infty} = + \infty
.
The points lie in the strip
C < {\color{teal}y(X) = Y} < B
.
The tangents have a negative slope for
{\color{teal}y(t)} > A
and a positive slope for
{\color{teal}y(t)} < A
.
Therefore
y_{\infty, 2}=A
attracts the solution and
\lim\limits_{t \to + \infty} = A
.
The tangent pieces have a positive slope for
{\color{teal}y(t)} > A
and a negative slope for
{\color{teal}y(t)} < A
.
Therefore
y_{\infty, 2}=A
repels the solution and it is not a limit.
The tangent pieces have a negative slope for
{\color{teal}y(t)} > B
and a positive slope for
{\color{teal}y(t)} < B
.
Therefore
y_{\infty, 1}=B
attracts the solution and
\lim\limits_{t \to + \infty} = B
.
The tangent pieces have a negative slope for
{\color{teal}y(t)} > C
and a positive slope for
{\color{teal}y(t)} < C
.
Therefore
y_{\infty, 3}=C
attracts the solution and
\lim\limits_{t \to + \infty} = C
.