de-CH
utf-8
math math-format graphie
With Slope Field: Range of Values
dgl-09-04
set
1053
randRange(-4,4) randRange(2,4) randRange(2,4) randRange(1,2) A+T A-D randRange(-6,6) randRangeExclude(C-1,B+1,[A,B,C])

Below we have the slope field of an ODE y' = F(y) with three stationary solutions.

style({ strokeWidth: .05 }); graphInit({ range: [[-8, 8], [C-3,B+3]], scale: [22, 22], strokeColor: "red", axisArrows: "->", tickStep: 10, }); label([0,A], "\\color{black}A", "left"); label([0,B], "\\color{black}B", "left"); label([0,C], "\\color{black}C", "left"); // Vektorfeld for(var i = -8; i <= 8; i+=1) { for(var j = C-2; j <= B+2; j+=.75) { var dy = pow(-1,P)*(j - A)*( j - B)*( j - C)/45; line([i - 0.25, j - dy*.25], [i + 0.25, j + dy*0.25], { arrows: "", strokeWidth: 1, stroke: "grey" }); } }

Let \color{teal}y be solution with \color{teal}y(X) = Y and domain ]\, {\color{red}a}\, ,\, {\color{blue}b}\,[.

Determine {\color{red}a} and {\color{blue}b}.

Write "infty" for +\infty and "-infty" for -\infty.

B
infty
-infty
C
C
A
A
B
\color{red}a =
\color{blue}b =

The slope field shows at a point (x_0,y_0) a tiny piece of the tangent of a solution of the ODE, on which (x_0,y_0) lies.

The slope of the tangent is determined by the value of the right-hand side of the ODE with the values (x_0,y_0).

We have three stationary solutions y_{\infty, 1}=C, y_{\infty, 2}=A, y_{\infty, 3}=B.

for(var i = -8; i <= 8; i+=1) { line([i - 0.15, C ], [i + 0.15, C], { arrows: "", strokeWidth: 2.75, stroke: "orange" }); line([i - 0.15, B ], [i + 0.15, B], { arrows: "", strokeWidth: 2.75, stroke: "orange" }); line([i - 0.15, A ], [i + 0.15, A], { arrows: "", strokeWidth: 2.75, stroke: "orange" }); } label( [X, Y], "\\color{teal} (X, Y)", "below" ); circle( [X, Y], 3 / 15, { fill: GREEN, stroke: "none" });

A solution remains within a strip.

But it is {\color{teal}y(X) = Y} > B unbounded, i.e.

\color{red}a = B and \color{blue}b = +\infty.

But it is {\color{teal}y(X) = Y} < C unbounded, i.e.

\color{red}a = - \infty and \color{blue}b = C.

It is A < {\color{teal}y(X) = Y} < B and thus

\color{red}a = A and \color{blue}b = B.

It is C < {\color{teal}y(X) = Y} < A and thus

\color{red}a = C and \color{blue}b = A.