de-CH
utf-8
math math-format
Determine Eigenvector
ev-01-01a
multiple
50176
randRangeNonZero(-8,8) randRangeExclude(-8,8,[0,A]) randRangeExclude(-8,8,[0,A]) A*D/B randRangeNonZero(-8,8)

Given A= \begin{pmatrix} A & B \\ fractionReduce(A*D,B) & D \end{pmatrix} .

Determine the entry {\color{red}X} such that v= \begin{pmatrix} {\color{red}X} \\ Y \end{pmatrix} is an eigenvector for the eigenvalue \lambda = 0.

X \color{red} X = - B/A * Y

Since \lambda = 0, we are looking for {\color{red}X} in v= \begin{pmatrix} {\color{red}X} \\ Y \end{pmatrix}, such that the matrix-vector product A\cdot v = \lambda \cdot v = 0 is the zero vector.

This translates to the equation \begin{pmatrix} A & B \\ fractionReduce(A*D,B) & D \end{pmatrix} \cdot \begin{pmatrix} {\color{red}X} \\ Y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.

We calculate \begin{pmatrix} A & B \\ fractionReduce(A*D,B) & D \end{pmatrix} \cdot \begin{pmatrix} {\color{red}X} \\ Y \end{pmatrix} = \begin{pmatrix} negParens(A) \cdot {\color{red}X} + negParens(B) \cdot negParens(Y) \\ negParens(fractionReduce(A*D,B)) \cdot {\color{red}X} + negParens(D) \cdot negParens(Y) \end{pmatrix} = \begin{pmatrix} negParens(A) \cdot {\color{red}X} + B *Y \\ negParens(fractionReduce(A*D,B)) \cdot {\color{red}X} + D *Y \end{pmatrix}.

The two coordinates are zero for {\color{red}X} = fractionReduce(- B*Y,A).