de-CH
utf-8
math math-format
Determine Matrix with Eigenvector
ev-01-01b
multiple
57344
randRangeNonZero(-8,8) randRangeNonZero(-8,8) randRangeNonZero(-8,8) randRangeExclude(-8,8,[0,A]) -D*Y/X -A*X/Y

Given A= \begin{pmatrix} A & {\color{red}b} \\ {\color{teal}c} & D \end{pmatrix} .

Find the entries {\color{red}b} and {\color{teal}c} such that v= \begin{pmatrix} X \\ Y \end{pmatrix} is an eigenvector for the eigenvalue \lambda = 0.

b \color{red} b = B
c \color{teal} c = C

We are looking for {\color{red}b} and {\color{teal}c} with A = \begin{pmatrix} A & {\color{red}b} \\ {\color{teal}c} & D \end{pmatrix} and v= \begin{pmatrix} X \\ Y \end{pmatrix}, such that the matrix-vector product A\cdot v = \lambda \cdot v = {\color{blue}0} equals the zero vector, as \lambda = 0.

We calculate die left-hand side and get

\begin{pmatrix} A & {\color{red}b} \\ {\color{teal}c} & D \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} negParens(A) \cdot negParens(X) + Y {\color{red}b} \\ {\color{teal}c} \cdot negParens(X) + negParens(D) \cdot negParens(Y) \end{pmatrix} = {\color{blue} \begin{pmatrix} A*X + Y {\color{red}b} \\ X {\color{teal}c} + D *Y \end{pmatrix} }.

Both equations \color{blue}A*X + Y {\color{red}b} = 0 and \color{blue}X {\color{teal}c} + D *Y =0 deliver {\color{red}b} = fractionReduce(- A*X,Y) und {\color{teal}c} = fractionReduce(- D*Y,X).