de-CH
utf-8
math math-format
Determine Eigenvalues and Eigenvectors
ev-ew-01-02
set
61440
randRangeNonZero(-8,8) randRangeExclude(-8,8,[L1,0])
randRangeNonZero(-8,8) L1 + L2 -A randRangeNonZero(-8,8) randRangeNonZero(-8,8)
randRangeNonZero(-8,8)

Given A = \begin{pmatrix} A & B\\ C & D \end{pmatrix}.

Determine the eigenvalues {\color{blue}\lambda_{1,2}} and the missing entry {\color{red}X}, such that \begin{pmatrix} {\color{red}X} \\ Y \end{pmatrix} is an eigenvector for the eigenvalue {\color{blue}\lambda_{1,2}} is.

L1
(L1-D)*Y/C
L2
(L2-D)*Y/C
{\color{blue}\lambda_1} =
{\color{red}X} =
{\color{blue}\lambda_2} =
{\color{red}X}=

We are looking for {\color{blue}\lambda} and {\color{red}X} satisfying A \cdot \begin{pmatrix} {\color{red}X} \\ Y \end{pmatrix} = {\color{blue}\lambda} \cdot \begin{pmatrix} {\color{red}X} \\ Y \end{pmatrix} .

At first, we determine {\color{blue}\lambda} as roots of the characteristic polynomial

\lambda^2 - L1+L2 \cdot \lambda + L1 *L2 = (\lambda - L1) \cdot (\lambda - L2). This shows that we have the two eigenvalues {\color{blue}\lambda} = L1 and {\color{blue}\lambda} = L2.

We calculate \begin{pmatrix} A & B\\ C & D \end{pmatrix} \cdot \begin{pmatrix} {\color{red}X} \\ Y \end{pmatrix} =\begin{pmatrix} negParens(A) \cdot {\color{red}X} + negParens(B) \cdot negParens(Y) \\ negParens(C) \cdot {\color{red}X} + negParens(D) \cdot negParens(Y) \end{pmatrix} = \begin{pmatrix} negParens(A) \cdot {\color{red}X} + B*Y \\ negParens(C) \cdot {\color{red}X} + D*Y \end{pmatrix}

and consider first {\color{blue}\lambda} = L1.

Thus, we are looking for {\color{red}X} with \begin{pmatrix} A {\color{red}X} + B*Y \\ C {\color{red}X} + D*Y \end{pmatrix} = {\color{blue}L1} \cdot \begin{pmatrix} {\color{red}X} \\ Y \end{pmatrix}.

With the 2nd coordinate C {\color{red}X} + D*Y = L1*Y we get {\color{red}X} = fractionReduce((L1-D)*Y,C).

These values {\color{red}X} = fractionReduce((L1-D)*Y,C) and {\color{blue}\lambda} = L1 guarantee that the 1st equation fractionReduce(A*(L1-D)*Y + B*Y*C,C) = fractionReduce(L1*(L1-D)*Y,C) holds.

Similarly, we get {\color{red}X} = fractionReduce((L2-D)*Y,C) for the eigenvector corresponding to the eigenvalue {\color{blue}\lambda} = L2.