de-CH
utf-8
math math-format
Calculate Eigenvalues
ew-01-01
multiple
43776
randRange(1,9) randRangeExclude(-9,9,[0,-K,K]) K + L2 L1 + L2 L1 * L2
randRange(-8,8) randRangeNonZero(-8,8) T-A fractionReduce(A*D - det,B) (A*D- det)/B

Compute the eigenvalues \color{red} \lambda_1 and \color{blue} \lambda_2 of \begin{pmatrix} A & B\\ C & D \end{pmatrix} with {\color{red} \lambda_1} > \color{blue} \lambda_2.

a \color{red} \lambda_1 = L1
a \color{blue} \lambda_2 = L2

The eigenvalues are the roots of the characteristic polynomial \det \begin{pmatrix} A - \lambda & B\\ C & D-\lambda \end{pmatrix}.

This is the quadratic equation \left(A - \lambda \right) \left(D- \lambda \right) - negParens(B*CN)= 0 = \lambda^2 -T \lambda + det.

We factorize \lambda^2 -T \lambda + det = \left( \lambda - L1 \right) \left( \lambda - L2 \right) .

We read the roots as eigenvalues: \color{red} \lambda_1 = L1 und \color{blue} \lambda_2 = L2.