Determine the entry {\color{red}b}
in
\begin{pmatrix} A & {\color{red}b}\\
C & D \end{pmatrix},
such that the matrix has eigenvalues \color{orange} \lambda_1 = L1
and
\color{blue} \lambda_2 = L2
.
\color{red} b
=
LSG
We can use that the product of the eigenvalues is the determinant of the matrix.
Using this observation, we need to find {\color{red}b}
such that
negParens(A) \cdot negParens(D) -
{\color{red}b}
\cdot negParens(C) =
{\color{orange}negParens(L1)} \cdot {\color{blue}negParens(L2)} =
{\color{teal}L1 * L2}.
Solving for {\color{red}b}
yields
{\color{red}b} = \dfrac{L1 * L2 - A*D}{-C} =
fractionReduce(A*D - L1 * L2,C).
Note: For the argument we need the eigenvalues to be prime numbers (or negative primes).
Otherwise the determinant coud be another produkt with
\color{orange} \lambda_1 = L1
and
\color{blue} \lambda_2 = L2
.