A function f
has the Fourier series
\displaystyle f(x) = \frac{a_0}{2} + \sum_{k=1}^\infty a_k \cos(kx) + b_k \sin(kx)
with
\displaystyle a_k = \frac{(-1)^k}{A k}
und
\displaystyle b_k = \frac{(-1)^{k+1}}{B k^{L}}
.
Determine the Fourier coefficients
\displaystyle {\color{blue}A_{M}}
und
\displaystyle {\color{red}B_{N}}
in the Fourier series of the derivative function
\displaystyle
f'(x) = \sum_{k=1}^\infty {\color{blue}A_k} \cos(kx) + {\color{red}B_k} \sin(kx)
.
{\color{blue}A_{M}}
=
pow(-1,M+1)/(B*pow(M,L-1))
{\color{red}B_{N}}
=
pow(-1,M+1)/A
We start with
\displaystyle f(x) = \frac{a_0}{2} + \sum_{k=1}^\infty a_k \cos(kx) + b_k \sin(kx)
and differentiate both sides.
Thus
\displaystyle f'(x) = \left( \frac{a_0}{2} + \sum_{k=1}^\infty a_k \cos(kx) + b_k \sin(kx)\right)' =
0+ \sum_{k=1}^\infty (a_k \cos(kx))' + (b_k \sin(kx))' =
\sum_{k=1}^\infty - k a_k \sin(kx) + kb_k \cos(kx)
.
Therefore by comparison:
\displaystyle {\color{blue}A_{k} = kb_k}
and
\displaystyle {\color{red}B_{k} = -ka_k}
.
Substituting the given indices gives the solutions
\displaystyle \color{blue}A_{M} =
fractionReduce(pow(-1,M+1),B*pow(M,L-1))
and
\displaystyle \color{red}B_{N} =
fractionReduce(pow(-1,M+1),A).