de-CH
utf-8
math math-format
Fourier Coefficients of the Derivative
fourier-01-01
multiple
1152
randRangeExclude(-8, 8, [-1,0,1] ) randRangeExclude(-8, 8, [-1,0,1] ) randRange(2,3) randRange(1,8) randRange(1,8)

A function f has the Fourier series \displaystyle f(x) = \frac{a_0}{2} + \sum_{k=1}^\infty a_k \cos(kx) + b_k \sin(kx) with \displaystyle a_k = \frac{(-1)^k}{A k} und \displaystyle b_k = \frac{(-1)^{k+1}}{B k^{L}}.

Determine the Fourier coefficients \displaystyle {\color{blue}A_{M}} und \displaystyle {\color{red}B_{N}} in the Fourier series of the derivative function \displaystyle f'(x) = \sum_{k=1}^\infty {\color{blue}A_k} \cos(kx) + {\color{red}B_k} \sin(kx).

{\color{blue}A_{M}} = pow(-1,M+1)/(B*pow(M,L-1))
{\color{red}B_{N}} = pow(-1,M+1)/A

We start with \displaystyle f(x) = \frac{a_0}{2} + \sum_{k=1}^\infty a_k \cos(kx) + b_k \sin(kx) and differentiate both sides.

Thus \displaystyle f'(x) = \left( \frac{a_0}{2} + \sum_{k=1}^\infty a_k \cos(kx) + b_k \sin(kx)\right)' = 0+ \sum_{k=1}^\infty (a_k \cos(kx))' + (b_k \sin(kx))' = \sum_{k=1}^\infty - k a_k \sin(kx) + kb_k \cos(kx).

Therefore by comparison: \displaystyle {\color{blue}A_{k} = kb_k} and \displaystyle {\color{red}B_{k} = -ka_k}.

Substituting the given indices gives the solutions \displaystyle \color{blue}A_{M} = fractionReduce(pow(-1,M+1),B*pow(M,L-1)) and \displaystyle \color{red}B_{N} = fractionReduce(pow(-1,M+1),A).