The polynomial
p(x) = x^3 - A+B+C x^2 + A*B + A*C + B*C x - A*B*C
has the root
x_0 = C
as well as two more {\color{blue}x_1} < {\color{red}x_2}
.
Determine the other two roots.
{\color{blue}x_1}
=
A
{\color{red}x_2}
=
B
Since we know one root (and the coefficient of x^3
is 1
), it is
p(x) = x^3 - A+B+C x^2 + A*B + A*C + B*C x - A*B*C =
(x-C) \cdot \left( x^2 + {\color{orange}b} x + {\color{teal}c}\right).
These coefficients {\color{orange}b}
and {\color{teal}c}
are given by polynomial division.
It is x^3 - A+B+C x^2 - \left ( x^2 (x- C) \right )
= -A-B x^2
, and we need to choose
{\color{orange}b} = -A-B
.
With this {\color{orange}b}
we multiply {\color{orange}bx}
and
x - C
and get
- A-B x^2 + A*C+B*C x
.
Now we subtract
-A-B x^2 + A*B + A*C + B*C x - \left ( -A-B x^2 + A*C + B*C x
\right )
= B*A x
, and we need to choose {\color{teal}c} = A*B
.
The calculation indeed works because we compute
{\color{teal}c} \cdot \left( x - C \right ) =
C x - C*B*A
und C x + A*C*B -
\left( C x + A*C*B \right)
=0.
The solutions of the quadratic equation q(x) = x^2 +-A-B x
+A*B = 0
we then find directly using Vieta's formulas:
{\color{blue}x_1} + {\color{red}x_2} = {\color{orange}A+B}
und
{\color{blue}x_1} \cdot {\color{red}x_2} = {\color{teal}A*B}
and thus {\color{blue}x_1} = A < {\color{red}x_2} = B.