de-CH
utf-8
math math-format kvector
Solution in Triangular Form
la-03-01
multiple
97844723712
randRangeNonZero(-9,9) randRangeExclude(-9,9,[0]) randRangeNonZero(-9,9) randRangeExclude(-9,9,[-1,0,1]) randRangeExclude(-9,9,[-1,0,1]) randRangeExclude(-9,9,[-1,0,1]) randRangeExclude(-9,9,[-1,0,1]) randRangeExclude(-9,9,[-1,0,1]) randRangeExclude(-9,9,[-1,0,1]) A*X+B*Y+C*Z D*Y+E*Z F*Z

The linear system of equations (LGS) \begin{array}{rrr} A x + B y + C z & = & M \\ D y + E z & = & N \\ F z & = & L \end{array} has a unique solution \begin{pmatrix} {\color{red}X} \\ {\color{blue}Y} \\ Z \end{pmatrix}.

Determine the entries

a \color{red} X = X
b \color{blue} Y = Y
c Z = Z

In matrix notation, the linear system becomes \begin{pmatrix}A & B & C & \bigl | &M \\ 0 & D & E & \bigl | &N \\ 0 & 0& F & \bigl | &L \end{pmatrix} .

From the triangular form, we directly read from the third row/equation that F z = L, thus Z = z = Z.

The second equation D y + E z = N can be rearranged to give D y = N - E z , so using that z = Z, we arrive at {\color{blue}Y = y = Y}.

Using the values z = Z and {\color{blue} y = Y} we found in the first equation A x + B y + C z = M leads to A {\color{red}x} = M - B {\color{blue}y} + C z , so we eventually find {\color{red}X = x = X}.