de-CH
utf-8
math math-format kvector
Solution in case of Triangle form
gauss-01-02
multiple
97844723712
randRangeNonZero(-9,9) randRangeExclude(-9,9,[0]) randRangeNonZero(-9,9) randRangeExclude(-9,9,[-1,0,1]) randRangeExclude(-9,9,[-1,0,1]) randRangeExclude(-9,9,[-1,0,1]) randRangeExclude(-9,9,[-1,0,1]) randRangeExclude(-9,9,[-1,0,1]) randRangeExclude(-9,9,[-1,0,1]) A*X+B*Y+C*Z D*Y+E*Z F*Z

A linear system has the row echelon form \begin{pmatrix}A & B & C & \bigl | &M \\ 0 & D & E & \bigl | &N \\ 0& 0& F & \bigl | &L \end{pmatrix} with the unique solution \begin{pmatrix} {\color{red}X} \\ {\color{blue}Y} \\ Z \end{pmatrix}.

Determine the entries

a \color{red} X = X
b \color{blue} Y = Y
c Z = Z

From the 3rd row in the triangle form we read directly F Z = L, thus Z = Z.

The second row D Y + E Z = N rearranged D Y = N - E Z and with the above Z = Z substituting gives {\color{blue}Y = Y}.

Using these two values Z = Z and {\color{blue} Y = Y} in the 1st row A X + B Y + C Z = M rearranged A {\color{red}X} = M - B {\color{blue}Y} + C Z gives eventually {\color{red}X = X}.