de-CH
utf-8
math math-format kvector
Solution with almost Matrix-Triangular Form
gauss-02-01
multiple
97844723712
randRangeNonZero(-9,9) randRangeExclude(-9,9,[0]) randRangeNonZero(-9,9) randRangeExclude(-9,9,[-1,0,1]) randRangeExclude(-9,9,[-1,0,1]) randRangeExclude(-9,9,[-1,0,1]) randRangeExclude(-9,9,[-1,0,1]) randRangeExclude(-9,9,[-1,0,1]) randRangeExclude(-9,9,[-1,0,1,D,-D]) randRangeExclude(-9,9,[-1,0,1]) A*X+B*Y+C*Z D*Y+E*Z F*Y+ G*Z

Given is a linear system of the form \begin{pmatrix}A & B & C & \bigl | &M \\ 0 & D & E & \bigl | &N \\ 0 & F & G & \bigl | &L \end{pmatrix} with the unique solution \begin{pmatrix} {\color{red}X} \\ {\color{blue}Y} \\ Z \end{pmatrix}.

Determine the entries

a \color{red} X = X
b \color{blue} Y = Y
c Z = Z

For the row echelon form, we must generate in \begin{pmatrix}A & B & C & \bigl | &M \\ 0 & D & E & \bigl | &N \\ 0 & \boxed{F} & G & \bigl | &L \end{pmatrix} a \fbox{\text{zero}}.

This is achieved by replacing the {3rd row} with negParens(F) \; \cdot {2. row} - D \; \cdot {3. row}.

This results in \begin{pmatrix}A & B & C & \bigl | &M \\ 0 & D & E & \bigl | &N \\ 0 & \boxed{0} & F*E-D*G & \bigl | &F*N-D*L \end{pmatrix} and thus Z = Z.

The second row D Y + E Z = N rearranged D Y = N - E Z and Z = Z substituting gives {\color{blue}Y = Y}.

Using these two values Z = Z and {\color{blue} Y = Y} in the first row A X + B Y + C Z = M rearranged A {\color{red}X} = M - B {\color{blue}Y} - C Z gives eventually {\color{red}X = X}.