de-CH
utf-8
math math-format
Gauss for 3x3 Linear Systems: unique
gauss-03-01
multiple
97844723712
randRangeNonZero(-8,8) randRangeNonZero(-4,4) randRangeNonZero(-4,4) randRangeExclude(-9,9,[-1,0,1]) randRangeExclude(-6,6,[-1,0,1]) randRangeExclude(-6,6,[-1,0,1]) randRangeNonZero(-4,4) randRangeNonZero(-4,4) randRangeNonZero(-4,4) randRangeNonZero(-4,4) randRangeExclude(-4,4,[-1,0,1,A,-A]) randRangeExclude(-4,4,[0,R,-R]) B*S-F*A C*S-G*A A*X+B*Y+C*Z R*X+D*Y+E*Z S*X+ F*Y+ G*Z M*S-A*L B*R-D*A C*R-E*A M*R-A*N

Given is a linear system of the form \begin{pmatrix}A & B & C & \bigl | &M \\ R & D & E & \bigl | &N \\ S & F & G & \bigl | &L \end{pmatrix} with the unique solution \begin{pmatrix} {\color{red}X} \\ {\color{blue}Y} \\ Z \end{pmatrix}.

Determine the entries

a \color{red} X = X
b \color{blue} Y = Y
c Z = Z

In the first step toward row echelon form, we must generate \begin{pmatrix}A & B & C & \bigl | &M \\ \boxed{R} & D & E & \bigl | &N \\ \boxed{S} & F & G & \bigl | &L \end{pmatrix} \fbox{\text{a zero}} respectively.

This is achieved by replacing the {2nd row} with negParens(R) \; \cdot {1. row} - A \; \cdot {2. row} and replacing the {3rd row} with negParens(S) \; \cdot {1. row} - A \; \cdot {3. row}.

This results into \begin{pmatrix}A & B & C & \bigl | &M \\ \boxed{0} & B*R-D*A & C*R-E*A & \bigl | &M*R-A*N \\ \boxed{0} & B*S-F*A & C*S-G*A & \bigl | &M*S-A*L \end{pmatrix} .

For the row echelon form, we must further get \fbox{\text{a zero}} in \begin{pmatrix}A & B & C & \bigl | &M \\ 0 & B*R-D*A & C*R-E*A & \bigl | &M*R-A*N \\ 0 & \boxed{FF} & GG & \bigl | & LL \end{pmatrix} .

This is managed by replacing the {3rd row} with negParens(FF) \; \cdot {2. row} - DD \; \cdot {3. row}.

This results into \begin{pmatrix}A & B & C & \bigl | &M \\ 0 & DD & EE & \bigl | &NN \\ 0 & \boxed{0} & FF*EE-DD*GG & \bigl | &FF*NN-DD*LL \end{pmatrix} and thus Z = Z.

The second row DD Y + EE Z = NN rearranged DD Y = NN - EE Z und Z = Z substituting gives {\color{blue}Y = Y}.

Using these two values Z = Z und {\color{blue} Y = Y} in the first row A X + B Y + C Z = M rearranged A {\color{red}X} = M - B {\color{blue}Y} - C Z is eventually {\color{red}X = X}.