Let f
an even function with
\displaystyle\int_{0}^{U}
f(x)\; dx = I.
Calculate
\displaystyle\int_{0}^{-U}
f(x) \; dx.
We swap the bounds of
\displaystyle\int_{\color{blue}{0}}^{
\color{red}{-U}}
f(x)\; dx
and get a negative sign
\displaystyle
\int_{\color{blue}{0}}^{
\color{red}{-U}} f(x)\; dx =
- \int_{\color{red}{-U}}^{\color{blue}{0}}
f(x)\; dx.
The graph of an even function is
symmetric with respect to the y
-Achse.
Here we see two example graphs in the same coordinate system:
The areas are each of equal size.
From the symmetric graph, we see:
\displaystyle
\pm\left(\int_{\color{red}{-U}}^{\color{blue}{0}}
f(x)\; dx\right) =
Left area =
Right area = \pm\left(
\displaystyle
\int_{0}^{U}
f(x)\; dx\right)
.
And together:
\displaystyle\int_{0}^{-U}
f(x) \; dx =
- \int_{\color{red}{-U}}^{\color{blue}{0}}
f(x)\; dx
= -I.