Let f
an odd function with
\displaystyle\int_0^{U}
f(x)\; dx = I.
Calculate
\displaystyle\int_{-U}^0
f(x) \; dx.
The graph of an odd function (z.B.
\pm \sin
) ist
symmetric about the origin.
and the areas
above- und
below the
x
-axis
are each of equal size.
From the point-symmetric graph, we see:
\displaystyle
\pm \left(
\int_{\color{red}{-U}}^{\color{blue}{0}}
f(x)\; dx \right) =
Left area =
Right area = \mp \left(
\displaystyle
\int_{0}^{U}
f(x)\; dx \right)
.
Thus:
\displaystyle
\int_{\color{red}{-U}}^{\color{blue}{0}}
f(x)\; dx = -I.