Let f
an odd function with
\displaystyle\int_{0}^{U}
f(x)\; dx = I.
Calculate
\displaystyle\int_{0}^{-U}
f(x) \; dx.
We swap the bounds of
\displaystyle\int_{\color{blue}{0}}^{
\color{red}{-U}}
f(x)\; dx
and get a negative sign
\displaystyle
\int_{\color{blue}{0}}^{
\color{red}{-U}} f(x)\; dx =
- \int_{\color{red}{-U}}^{\color{blue}{0}}
f(x)\; dx.
The graph of an odd function (e.g.
\pm \sin
) ist
symmetric about the origin.
and the areas
above- and
below the
x
-axis
are each of equal size.
From the point-symmetric graph, we see:
\displaystyle
\pm \left(
\int_{\color{red}{-U}}^{\color{blue}{0}}
f(x)\; dx \right) =
Left area =
Right area = \mp \left(
\displaystyle
\int_{0}^{U}
f(x)\; dx \right)
.
And together:
\displaystyle\int_{0}^{-U}
f(x) \; dx =
- \int_{\color{red}{-U}}^{\color{blue}{0}}
f(x)\; dx = I.