de-CH
utf-8
math
Partial Integration
i-07-01
expression
3
[ ["x", "-\\cos(x)", "1", "\\sin(x)", "x\\sin(x)", "-\\cos(x)", "-x\\cos(x) + \\sin(x)"], ["x", "\\sin(x)", "1", "\\cos(x)", "x\\cos(x)", "\\sin(x)", "x\\sin(x) + \\cos(x)"], ["x", "e^x", "1", "e^x", "xe^x", "e^x", "xe^x - e^x"] ] randRange(0,functionBank.length-1) functionBank[fNum]

Determine \displaystyle \int f[4] \; dx.

Use C as the integration constant.

f[6] + C

For partial integration, we use that

\displaystyle \int f(x)g'(x) \; dx = f(x)g(x) - \int f'(x)g(x)\; dx + C .

An appropriate choice of f and g should ensure to find a primitive of f'(x)g(x) in an easier way than as for f(x)g'(x).

Here, a suitable choice might be \displaystyle f(x) = f[0] and \displaystyle g'(x) = f[3].

With \displaystyle f'(x) = f[2] and \displaystyle \color{blue}{g(x) = f[1]}, is then

\displaystyle f'(x){\color{blue}g(x)} = f[2] \cdot \left(f[1] \right) = f[5] .

(In \displaystyle \int g'(x) \; dx = g(x) is the integration constant C=0.)

It is \displaystyle f(x){\color{blue}g(x)} = f[0] \cdot \left(\color{blue}{f[1]} \right) .

Determine \displaystyle \int f[5] \; dx and summarise

\displaystyle \int f[4] \; dx = f[6] + C.