de-CH
utf-8
math
Partial Integration
i-07-02
expression
8
randRange(2,9) ["\\ln(x)", "\\frac{1}{"+(n+1)+"}x^{"+(n+1)+"}", "\\frac{1}{x}", "x^"+n+"", "x^"+n+"\\ln(x)", "\\frac{1}{"+(n+1)+"}x^{"+n+"}", "\\frac{1}{"+(n+1)+"}x^{"+(n+1)+"}\\ln(x) - \\frac{1}{"+(n+1)*(n+1)+"}x^{"+(n+1)+"}"]

Determine \displaystyle \int f[4] \; dx.

Use C as the integration constant.

f[6] + C

For partial integration, we use that

\displaystyle \int f(x)g'(x)\; dx = f(x)g(x) - \int f'(x)g(x) \; dx + C .

An appropriate choice of f and g should ensure to find a primitive of f'(x)g(x) in an easier way than as for f(x)g'(x).

Here, suitable choices are \displaystyle f(x) = f[0] and \displaystyle g'(x) = f[3].

With \displaystyle f'(x) = f[2] and \displaystyle \color{blue}{g(x) = f[1]} is

\displaystyle f'(x){\color{blue}g(x)} = f[2] \cdot \left({\color{blue}f[1]}\right) = f[5] .

(In \displaystyle \int g'(x) \; dx = g(x) is the integration constant C=0.)

It is \displaystyle f(x){\color{blue}g(x)} = f[0] \cdot \left( {\color{blue}f[1]} \right) = f[1]f[0] .

Determine \displaystyle \int f[5] \; dx and and summarise

\displaystyle \int f[4] \; dx = f[6] + C.