Determine z= {\color{orange}x} + {\color{blue}y} \cdot i =(A_REP) + (B_REP):
\color{orange}x
=
X
\color{blue}y
=
Y
We expand the brackets as usual and initially get:
({\color{orange}A_REAL} + {\color{blue}A_IMAG} i) +
({\color{orange}B_REAL} + {\color{blue}B_IMAG} i) =
{\color{orange}negParens(A_REAL)} + {\color{orange}negParens(B_REAL)} +
{\color{blue}negParens(A_IMAG)} i + {\color{blue}negParens(B_IMAG)} i.
Rearranging yields:
z= {\color{orange}A_REAL + B_REAL}+
\left( {\color{blue}negParens(A_IMAG)} + {\color{blue}negParens(B_IMAG)} \right) i =
{\color{orange}A_REAL + B_REAL} +
{\color{blue}negParens(A_IMAG + B_IMAG)} \cdot i
.