de-CH
utf-8
math math-format
Multiplication of Complex Numbers
komplex
multiple
65536
randRangeNonZero(-8, 8) randRangeNonZero(-8, 8) randRangeNonZero(-8, 8) randRangeNonZero(-8, 8) complexNumber(A_REAL, A_IMAG) complexNumber(B_REAL, B_IMAG) (A_REAL * B_REAL) - (A_IMAG * B_IMAG) (A_REAL * B_IMAG) + (A_IMAG * B_REAL)

Determine z= {\color{orange}x} + {\color{blue}y} \cdot i =(A_REP) \cdot (B_REP):

x \color{orange}x = X
y \color{blue}y = Y

First, expand the brackets:

({\color{orange}A_REAL} + {\color{blue}A_IMAG} i) \cdot ({\color{orange}B_REAL} + {\color{blue}B_IMAG} i) = {\color{orange}negParens(A_REAL)} \cdot {\color{orange}negParens(B_REAL)} + {\color{orange}negParens(A_REAL)} \cdot {\color{blue}negParens(B_IMAG)} i+ {\color{blue}negParens(A_IMAG)} i \cdot {\color{orange}negParens(B_REAL)}+ {\color{blue}negParens(A_IMAG)} i \cdot {\color{blue}negParens(B_IMAG)} i.

Combining terms gives:

z= A_REAL * B_REAL + coefficient(A_REAL * B_IMAG)i + coefficient(A_IMAG * B_REAL)i + coefficient(A_IMAG * B_IMAG)i^2 = A_REAL * B_REAL + (A_REAL * B_IMAG + A_IMAG * B_REAL)i + coefficient(A_IMAG * B_IMAG) \cdot {\color{red}i^2}.

Using \color{red} i^2 = -1, we conclude that

z= A_REAL * B_REAL + negParens(A_REAL * B_IMAG + A_IMAG * B_REAL) i - negParens( A_IMAG * B_IMAG ).

This can be simplified to: z = {\color{orange}X} + {\color{blue}negParens(Y)} \cdot i.