Determine z= {\color{orange}x} + {\color{blue}y} \cdot i =(A_REP) \cdot (B_REP):
\color{orange}x
=
X
\color{blue}y
=
Y
First, expand the brackets:
({\color{orange}A_REAL} + {\color{blue}A_IMAG} i) \cdot
({\color{orange}B_REAL} + {\color{blue}B_IMAG} i) =
{\color{orange}negParens(A_REAL)} \cdot {\color{orange}negParens(B_REAL)} +
{\color{orange}negParens(A_REAL)} \cdot {\color{blue}negParens(B_IMAG)} i+
{\color{blue}negParens(A_IMAG)} i \cdot {\color{orange}negParens(B_REAL)}+
{\color{blue}negParens(A_IMAG)} i \cdot {\color{blue}negParens(B_IMAG)} i.
Combining terms gives:
z= A_REAL * B_REAL + coefficient(A_REAL * B_IMAG)i +
coefficient(A_IMAG * B_REAL)i + coefficient(A_IMAG * B_IMAG)i^2 =
A_REAL * B_REAL + (A_REAL * B_IMAG + A_IMAG * B_REAL)i + coefficient(A_IMAG * B_IMAG) \cdot {\color{red}i^2}.
Using \color{red} i^2 = -1
, we conclude that
z= A_REAL * B_REAL + negParens(A_REAL * B_IMAG + A_IMAG * B_REAL) i -
negParens( A_IMAG * B_IMAG ).
This can be simplified to:
z = {\color{orange}X} + {\color{blue}negParens(Y)} \cdot i
.