Determine z= {\color{orange}x} + {\color{blue}y} \cdot i = \dfrac{A_REP}{B_REP}
.
\color{orange}x
=
X
\color{blue}y
=
Y
Multiply the numerator and denominator by the complex conjugate of the denominator
= \green{BAR}
.
\qquad \dfrac{A_REP}{B_REP} \cdot \green{1} =
\dfrac{A_REP}{B_REP} \cdot
\dfrac{\green{BAR}}{\green{BAR}}
Simplify using (a + b) \cdot (a - b) = a^2 - b^2
:
\qquad = \dfrac{(A_REP) \cdot (BAR)}
{(B_REAL)^2 - (coefficient(B_IMAG)i)^2}
\qquad = \dfrac{(A_REP) \cdot (BAR)}
{B_REAL * B_REAL + B_IMAG * B_IMAG}
\qquad \dfrac{(\blue{A_REP}) \cdot (\red{BAR})}
{B_REAL * B_REAL + B_IMAG * B_IMAG}
The denominator is now a real number.
Now calculate the numerator:
\qquad =
\dfrac{\blue{negParens(A_REAL)} \cdot \red{negParens(B_REAL)} +
\blue{negParens(A_IMAG)} \cdot \red{negParens(B_REAL) i} + \blue{negParens(A_REAL)} \cdot
\red{negParens(B_BAR_IMAG) i} +
\blue{negParens(A_IMAG)} \cdot \red{negParens(B_BAR_IMAG) i^2}}
{N}
\qquad = \dfrac{negParens(A_REAL * B_REAL) + negParens(A_IMAG * B_REAL)i +
negParens(A_REAL * B_BAR_IMAG)i + negParens(A_IMAG * B_BAR_IMAG) i^2}{N} =
\dfrac{negParens(A_REAL * B_REAL) + negParens(A_IMAG * B_REAL)i +
negParens(A_REAL * B_BAR_IMAG)i - A_IMAG * B_BAR_IMAG}{N}
Simplify this to:
\qquad =
\dfrac{REAL_Z + IMAG_Zi}
{N} =
{\color{orange}X} + {\color{blue}negParens(Y)} \cdot i.