de-CH
utf-8
math math-format
Division of Complex Numbers
komplex-01-05c
multiple
240000
randRangeNonZero(-12, 12) randRange(-12, 12) randRangeNonZero(-5, 5) randRangeNonZero(-5, 5) X * B_REAL - Y * B_IMAG X * B_IMAG + Y * B_REAL B_REAL * B_REAL + B_IMAG * B_IMAG (A_REAL * B_REAL) + (A_IMAG * B_IMAG) (A_IMAG * B_REAL) - (A_REAL * B_IMAG) complexNumber(X, Y) complexNumber(A_REAL, A_IMAG) complexNumber(B_REAL, B_IMAG) -B_IMAG complexNumber(B_REAL, B_BAR_IMAG)

Determine z= {\color{orange}x} + {\color{blue}y} \cdot i = \dfrac{A_REP}{B_REP}.

x \color{orange}x = X
y \color{blue}y = Y

Multiply the numerator and denominator by the complex conjugate of the denominator = \green{BAR}.

\qquad \dfrac{A_REP}{B_REP} \cdot \green{1} = \dfrac{A_REP}{B_REP} \cdot \dfrac{\green{BAR}}{\green{BAR}}

Simplify using (a + b) \cdot (a - b) = a^2 - b^2:

\qquad = \dfrac{(A_REP) \cdot (BAR)} {(B_REAL)^2 - (coefficient(B_IMAG)i)^2}

\qquad = \dfrac{(A_REP) \cdot (BAR)} {B_REAL * B_REAL + B_IMAG * B_IMAG}

\qquad \dfrac{(\blue{A_REP}) \cdot (\red{BAR})} {B_REAL * B_REAL + B_IMAG * B_IMAG}

The denominator is now a real number.

Now calculate the numerator:

\qquad = \dfrac{\blue{negParens(A_REAL)} \cdot \red{negParens(B_REAL)} + \blue{negParens(A_IMAG)} \cdot \red{negParens(B_REAL) i} + \blue{negParens(A_REAL)} \cdot \red{negParens(B_BAR_IMAG) i} + \blue{negParens(A_IMAG)} \cdot \red{negParens(B_BAR_IMAG) i^2}} {N}

\qquad = \dfrac{negParens(A_REAL * B_REAL) + negParens(A_IMAG * B_REAL)i + negParens(A_REAL * B_BAR_IMAG)i + negParens(A_IMAG * B_BAR_IMAG) i^2}{N} = \dfrac{negParens(A_REAL * B_REAL) + negParens(A_IMAG * B_REAL)i + negParens(A_REAL * B_BAR_IMAG)i - A_IMAG * B_BAR_IMAG}{N}

Simplify this to:

\qquad = \dfrac{REAL_Z + IMAG_Zi} {N} = {\color{orange}X} + {\color{blue}negParens(Y)} \cdot i.