de-CH
utf-8
math math-format graphie graphie-helpers
Divide Complex Numbers in Polar Form
divide_complex_number_polar_forms
custom
13552
24 randFromArray( [ true, false ] )
randRange(1, 10) randRange(1, 10) ANSWER_RADIUS * B_RADIUS
"\\blue{" + ANSWER_RADIUS + "}" randRange( 0, DENOMINATOR - 1 ) ANSWER_ANGLE_NUMERATOR * PI * 2 / DENOMINATOR "\\blue{" + piFraction(ANSWER_ANGLE, true) + "}" "\\red{" + B_RADIUS + "}" randRange(1, DENOMINATOR - 1) B_ANGLE_NUMERATOR * PI * 2 / DENOMINATOR "\\red{" + piFraction(B_ANGLE) + "}" "\\red{" + polarForm(B_RADIUS, B_ANGLE, USE_EULER_FORM) + "}" cos( B_ANGLE ) * B_RADIUS sin( B_ANGLE ) * B_RADIUS "{" + A_RADIUS + "}" (ANSWER_ANGLE_NUMERATOR + B_ANGLE_NUMERATOR) % DENOMINATOR A_ANGLE_NUMERATOR * PI * 2 / DENOMINATOR "{" + piFraction(A_ANGLE, true) + "}" "{" + polarForm(A_RADIUS, A_ANGLE, USE_EULER_FORM) + "}" cos( A_ANGLE ) * A_RADIUS sin( A_ANGLE ) * A_RADIUS "{" + piFraction((A_ANGLE_NUMERATOR - B_ANGLE_NUMERATOR ) * PI * 2 / DENOMINATOR, true) + "}"

Divide the following complex numbers:

{\color{blue}z} = \dfrac{v}{\color{red}w} = \dfrac{A_REP}{B_REP}

{\color{blue}z} = \dfrac{v}{\color{red}w} = \dfrac{A_REP}{B_REP}

graphInit({ range: [ [ -10, 10 ], [ -10 ,10 ] ], scale: 20, tickStep: 1, axisArrows: "->" }); drawComplexChart( 10, DENOMINATOR ); label( [A_REAL, A_IMAG], "\\color{black} v", "left" ); circle( [A_REAL, A_IMAG], 1 / 4, { fill: KhanUtil.BLACK, stroke: "none" }); label( [B_REAL, B_IMAG], "\\color{red} w", "right" ); circle( [B_REAL, B_IMAG], 1 / 4, { fill: KhanUtil.RED, stroke: "none" }); graph.currComplexPolar = new ComplexPolarForm( DENOMINATOR, 10, USE_EULER_FORM ); graph.currComplexPolar.color = BLUE; redrawComplexPolarForm();

{\color{blue}z} =

1

[ graph.currComplexPolar.getAngleNumerator(), graph.currComplexPolar.getRadius() ]
var angle = guess[0]; var radius = guess[1]; if (angle === 0 && radius === 1) { return ""; } return angle === ANSWER_ANGLE_NUMERATOR && radius === ANSWER_RADIUS;
redrawComplexPolarForm(guess[0], guess[1]);
redrawComplexPolarForm(guess[0], guess[1]);

For the division of to polar forms we divide the absolute values and subtract the angle.

The 1st number, v = A_REP, has angle A_ANGLE_REP and absolute value A_RADIUS_REP.

The 2nd, {\red w} = B_REP, the angle B_ANGLE_REP and absolute value B_RADIUS_REP.

Thus of the result are \dfrac{A_RADIUS_REP}{B_RADIUS_REP} = ANSWER_RADIUS_REP.

The difference of the angles is A_ANGLE_REP - B_ANGLE_REP = INTERMEDIATE_ANGLE_REP.

The angle INTERMEDIATE_ANGLE_REP is negative. Thus, the angle here is INTERMEDIATE_ANGLE_REP + 2 \pi = ANSWER_ANGLE_REP as we want it be positive.

The difference of the angles is A_ANGLE_REP - B_ANGLE_REP = ANSWER_ANGLE_REP.