Let {\color{blue}z} = X + Yi
and {\color{green}w} = A + {\color{red}B} \cdot i
two complex numbers.
Determine {\color{red}B}
, such that z \cdot w
lies in the region D
(piece of an annulus).
The vertical line shows all values that {\color{green}w}
can take for different values of {\color{red}B}
.
A strategy now is to estimate how large the argument must be to rotata {\color{blue}z}
in the direction of D
.
Then, for a scaling, the absolute value {\color{green}|w|}
must still be chosen appropriately.
Alternatively, we consider the set of all complex numbers of the form {\color{blue}z} \cdot (A + {\color{red}B} \cdot i)
.
This is a line in the complex plane.
Now we choose a point in D
and find the parameter {\color{red}B}
, such that the point lies on the line.
A description of the line with the given numbers is
\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} A*X \\ A*Y \end{pmatrix}
+ {\color{red}B} \begin{pmatrix} -Y \\ X \end{pmatrix}
.
Substitute the coordinates of the point on the left-hand side and find {\color{red}B}
as
\begin{pmatrix}re0 \\ im0 \end{pmatrix} = \begin{pmatrix} A*X \\ A*Y \end{pmatrix}
+ {\color{red}B} \begin{pmatrix} -Y \\ X \end{pmatrix}
.
It is {\color{red}B} = B,
and
{\color{green}w} = A {\color{red} + B} \cdot i
the solution.