Given the vector v
.
For which entries does the matrix
A = \begin{pmatrix}
\color{red}{a} & D \\ 0 & \color{blue}{b} \end{pmatrix}
fit the situation below, if the second vector
\color{orange} A\cdot v
is?
\color{red}a
=
A
\color{blue}b
=
B
Find the entries \color{red}{a}
and \color{blue}{b}
with
A \cdot \begin{pmatrix} C \\ C \end{pmatrix} =
\color{orange}\begin{pmatrix} C*A+D*C \\ C*B \end{pmatrix}
.
Initially, this is the equation
\begin{pmatrix} \color{red}{a} & D \\ 0 & \color{blue}{b} \end{pmatrix} \cdot
\begin{pmatrix} C \\ C \end{pmatrix} =
\begin{pmatrix} negParens(C) \cdot {\color{red}a} + C \cdot negParens(D) \\
negParens(C) \cdot
\color{blue}{b} \end{pmatrix} = \color{orange}
\begin{pmatrix} C*A+D*C \\ C*B \end{pmatrix}
.
In the two coordinates, the two equations are
negParens(C) \cdot {\color{red}a} + negParens(C) \cdot negParens(D) = \color{orange}
C*A+D*C
and
negParens(C) \cdot {\color{blue}b} = \color{orange}C*B
therefore {\color{red}a} = A
and {\color{blue}b} = B.