de-CH
utf-8
math math-format
Matrix-Vector Multiplication
la-01-01
multiple
1000000
randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) A11*X1+A12*Y1+A13*Z1+A14*U1 A21*X1+A22*Y1+A23*Z1+A24*U1 A31*X1+A32*Y1+A33*Z1+A34*U1 A41*X1+A42*Y1+A43*Z1+A44*U1

Let A = \begin{pmatrix} A11 & A12 & A13 & A14 \\ A21 & A22 & A23 & A24 \\ A31 & A32 & A33 & A34 \\ A41 & A42 & A43 & A44 \end{pmatrix} and v = \begin{pmatrix} X1 \\ Y1 \\ Z1 \\ U1 \end{pmatrix}.

Determine A \cdot v = \begin{pmatrix} x \\ y \\ z \\ u \end{pmatrix}.

x x = X2
y y = Y2
z z = Z2
u u = U2

The product A \cdot v = \begin{pmatrix} x \\ y \\ z \\ u \end{pmatrix} says for example for the 1. coordinate:

We go to the 1. row and compute x = negParens(A11) \cdot negParens(X1) + negParens(A12) \cdot negParens(Y1)+ negParens(A13) \cdot negParens(Z1)+ negParens(A14) \cdot negParens(U1).

This gives x = X2.

For the three additional entries, we go to the 2, 3. and 4. row.

We get y = Y2, z = Z2 and u = U2.