Let
A =
\begin{pmatrix}
A11 & A12 & A13 & A14 \\
A21 & A22 & A23 & A24 \\
A31 & A32 & A33 & A34 \\
A41 & A42 & A43 & A44
\end{pmatrix}
and
v = \begin{pmatrix} X1 \\ Y1 \\ Z1 \\ U1
\end{pmatrix}
.
Determine A \cdot v = \begin{pmatrix} x \\ y \\ z \\ u
\end{pmatrix}
.
x
=
X2
y
=
Y2
z
=
Z2
u
=
U2
The product A \cdot v = \begin{pmatrix} x \\ y \\ z \\ u
\end{pmatrix}
says for example for the 1. coordinate:
We go to the 1. row and compute x = negParens(A11) \cdot negParens(X1) +
negParens(A12) \cdot negParens(Y1)+
negParens(A13) \cdot negParens(Z1)+ negParens(A14) \cdot negParens(U1).
This gives x = X2
.
For the three additional entries, we go to the 2, 3. and 4. row.
We get y = Y2, z = Z2
and u = U2
.