Let
A =
\begin{pmatrix}
A11 & A12 & A13 \\
A21 & A22 & A23\\
A31 & A32 & A33
\end{pmatrix}
and
B =
\begin{pmatrix}
B11 & B12 & B13 \\
B21 & B22 & B23\\
B31 & B32 & B33
\end{pmatrix}
.
Consider the product A \cdot B = C = (c_{ij})
. Determine the entries
c_{12}, c_{22}
and c_{31}
.
c_{13}
=
C13
c_{22}
=
C22
c_{31}
=
C31
For A = (a_{ij})
and B = (b_{ij})
the product A \cdot B = C = (c_{ij})
is defined by
\displaystyle c_{ij} = \sum_{k=1}^4 a_{ik}\cdot b_{kj}
.
This gives c_{13} = negParens(A11) \cdot negParens(B13)+
negParens(A12) \cdot negParens(B23)+
negParens(A13) \cdot negParens(B33) = C13
.
And c_{22} = negParens(A21) \cdot negParens(B12)+
negParens(A22) \cdot negParens(B22)+
negParens(A23) \cdot negParens(B32)= C22
.
And c_{31} = negParens(A31) \cdot negParens(B11)+
negParens(A32) \cdot negParens(B21)+
negParens(A33) \cdot negParens(B31)= C31
.