de-CH
utf-8
math math-format
Matrix-Vector Multiplication
la-01-01
multiple
1000000
randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) A11*B13+A12*B23+A13*B33 A21*B12+A22*B22+A23*B32 A31*B11+A32*B21+A33*B31

Let A = \begin{pmatrix} A11 & A12 & A13 \\ A21 & A22 & A23\\ A31 & A32 & A33 \end{pmatrix} and B = \begin{pmatrix} B11 & B12 & B13 \\ B21 & B22 & B23\\ B31 & B32 & B33 \end{pmatrix} .

Consider the product A \cdot B = C = (c_{ij}). Determine the entries c_{12}, c_{22} and c_{31}.

x c_{13} = C13
y c_{22} = C22
z c_{31} = C31

For A = (a_{ij}) and B = (b_{ij}) the product A \cdot B = C = (c_{ij}) is defined by \displaystyle c_{ij} = \sum_{k=1}^4 a_{ik}\cdot b_{kj}.

This gives c_{13} = negParens(A11) \cdot negParens(B13)+ negParens(A12) \cdot negParens(B23)+ negParens(A13) \cdot negParens(B33) = C13.

And c_{22} = negParens(A21) \cdot negParens(B12)+ negParens(A22) \cdot negParens(B22)+ negParens(A23) \cdot negParens(B32)= C22.

And c_{31} = negParens(A31) \cdot negParens(B11)+ negParens(A32) \cdot negParens(B21)+ negParens(A33) \cdot negParens(B31)= C31.