de-CH
utf-8
math math-format
Linear Map: Compute Values
la-01-04
multiple
234256
randRangeExclude(-12,12,[-1,0,1]) randRangeExclude(-12,12,[-1,0,1]) randRangeExclude(-12,12,[-1,0,1]) randRangeExclude(-12,12,[-1,0,1])

Let V be \mathbb R-vector space \mathcal F: V \to \mathbb R a linear map and v, u \in V with {\color{red}\mathcal F(v) = A} and {\color{blue}\mathcal F(u) = B}.

Determine \mathcal F(Cv + Du).

x \mathcal F(Cv + Du) = C*A+D*B

Using the linear property, we have \mathcal F(Cv + Du) = C {\color{red}\mathcal F(v)} + D{\color{blue}\mathcal F(u)}.

Substituting {\color{red}\mathcal F(v) = A} and {\color{blue}\mathcal F(u) = B} yields \mathcal F(Cv + Du) = C {\color{red}\mathcal F(v)} + D{\color{blue}\mathcal F(u)}= C*A+D*B.