Let V
be \mathbb R
-vector space
\mathcal F: V \to \mathbb R
a linear map and
v, u \in V
with {\color{red}\mathcal F(v) = A}
and
{\color{blue}\mathcal F(u) = B}
.
Determine \mathcal F(Cv + Du)
.
\mathcal F(Cv + Du)
=
C*A+D*B
Using the linear property, we have \mathcal F(Cv + Du) = C {\color{red}\mathcal F(v)} +
D{\color{blue}\mathcal F(u)}
.
Substituting {\color{red}\mathcal F(v) = A}
and
{\color{blue}\mathcal F(u) = B}
yields
\mathcal F(Cv + Du) = C {\color{red}\mathcal F(v)} +
D{\color{blue}\mathcal F(u)}=
C*A+D*B
.