de-CH
utf-8
math math-format
Linear Map: Compute Additional Values
la-01-05
multiple
113379904
randRangeExclude(-12,12,[-1,0,1]) randRangeExclude(-12,12,[-1,0,1]) randRangeExclude(-12,12,[-1,0,1]) randRangeExclude(-12,12,[-1,0,1]) randRangeExclude(-12,12,[-1,0,1]) randRangeExclude(-12,12,[-1,0,1])

Let V be \mathbb R-vector space, \mathcal F: V \to \mathbb R a linear map and v, u \in V with \mathcal F(Vv) = A and \mathcal F(Uu) = B.

Determine \mathcal F(Cv + Du).

x \mathcal F(Cv + Du) = C*A/V+D*B/U

Using the linear property, we have \mathcal F(Cv + Du) = C {\color{red}\mathcal F(v)} + D{\color{blue}\mathcal F(u)}.

In the same manner \mathcal F(Vv) = V {\color{red}\mathcal F(v)} = A and \mathcal F(Uu) = U {\color{blue}\mathcal F(u)} = B.

Expanding and substituting gives: \mathcal F(Cv + Du) = C {\color{red}\mathcal F(v)} + D{\color{blue}\mathcal F(u)}= fractionReduce(C*A*U+D*B*V,U*V).