Let
{\color{blue}A \in M_{M \times N}}
and
{\color{red}B \in M_{K \times L}}
.
Then the product {\color{blue}A} \cdot {\color{red}B}
is
M \times L
- matrix
not defined.
M \times N
- matrix.K \times L
- matrix.N \times K
- matrix.L \times K
- matrix.M \times N
- matrix.K \times L
- matrix.N \times K
- matrix.L \times K
- matrix.L \times M
- matrix.
To define the product {\color{blue}A} \cdot {\color{red}B}
the number of columns of {\color{blue}A}
must equal the number of rows of {\color{red}B}
.
This is the case here, and the product has M
rows
and L
columns.
Therefore {\color{blue}A} \cdot {\color{red}B} \in M_{M \times L}
.
To define the product {\color{blue}A} \cdot {\color{red}B}
the number of columns of {\color{blue}A}
must equal the number of rows of {\color{red}B}
.
This is not the case here.