de-CH
utf-8
math math-format
Getting Inverse Using Determinant
la-05-01
multiple
972
randRangeNonZero(-8,8) randRangeNonZero(-8,8) randRangeNonZero(-8,8) randRangeNonZero(-8,8) A*D-B*C

Given A= \begin{pmatrix} A & B \\ C & D \end{pmatrix} .

Determine the entries \color{blue}a, b, c,d such that A^{-1} = \begin{pmatrix} \color{blue}{a} & \color{blue}{b} \\ \color{blue}{c} & \color{blue}{d} \end{pmatrix} .

a \color{blue}a = D/det
b \color{blue}b = -B/det
c \color{blue}c = -C/det
d \color{blue}d = A

One approach is using the determinant: here it's \det(A) = det and afterwards using the formula to get A^{-1}= \dfrac 1{det}\begin{pmatrix} D & -B \\ -C & A \end{pmatrix} =\begin{pmatrix} fractionReduce(D,det) & fractionReduce(-B,det) \\ fractionReduce(-C,det) & fractionReduce(A,det)\end{pmatrix}.

Without the determinant, compute: \begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot \begin{pmatrix} \color{blue}{a} & \color{blue}{b} \\ \color{blue}{c} & \color{blue}{d} \end{pmatrix} =\begin{pmatrix} 1 & 0\\ 0 & 1\end{pmatrix} and solve the 4 \times 4 linear system of equations.