de-CH
utf-8
math math-format
Homogeneous System with Nontrivial Solution
la-05-03
multiple
97844723712
randRange(-6 ,6) randRange(-6 ,6) randRange(-6 ,6) randRange(-6 ,6) randRange(-6 ,6) randRange(-6 ,6) randRange(-6 ,6) randRange(-6 ,6)
fractionReduce((B*E*S+C*R*F-C*D*S-B*R*G),(E*F-D*G)) A*D*G+B*E*S+C*R*F-C*D*S-B*R*G-A*E*F

For which \color{red} a does the linear system Ax = 0 with A= \begin{pmatrix} {\color{red} a} & B & C \\ R & D & E \\ S & F & G \end{pmatrix} have a nontrivial solution x = \begin{pmatrix}x_1 \\ x_2 \\ x_3 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.

a {\color{red}a} = A

There's a nontrivial solution x = \begin{pmatrix}x_1 \\ x_2 \\ x_3 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} if and only if the determinant of A is not zero.

For a 3 \times 3 - matrix (and only for those) the determinant can be computed with the rule of Sarrus .

This yields \det = {\color{red}a}\cdot negParens(D*G) + B*E*S + C*R*F - C*D*S - B*R*G - {\color{red}a}\cdot negParens(E*F).

Solving the equation \det = 0 gives {\color{red}a} = A.