de-CH
utf-8
math math-format
Linear System with Steady State
linsys-01-01
multiple
2244
randRange(-8,8) randRangeExclude(-8,8,[0,A,-A]) randRangeExclude(-8,8,[A,-A,C,-C]) A*D/C

The matrix A= \begin{pmatrix} A & {\color{red}b}\\ C & D \end{pmatrix} defines a system y' = A \cdot y.

Determine the entry {\color{red}b} such that the system has a stationary state.

b \color{red} b = A*D/C

For an eigenvector v with the corresponding eigenvalue \lambda is y with y(t) = e^{\lambda \cdot t}\cdot v a solution of the system.

For \lambda =0 is e^{\lambda \cdot t} = e^{0} = 1 and a correspondung eigenvector gives a stationary solution.

The eigenvalue zero exists if and only if \det(A) = 0.

It is \det(A) = negParens(A) \cdot negParens(D) - {\color{red}b} \cdot negParens(C).

Setting this equal to zero and solving for {\color{red}b} gives:

{\color{red}b} = fractionReduce(A*D,C).