de-CH
utf-8
math math-format
Determining Steady State
linsys-01-02a
multiple
50176
randRangeNonZero(-8,8) randRangeExclude(-8,8,[0,A]) randRangeExclude(-8,8,[0,A]) A*D/B randRangeNonZero(-8,8)

The matrix A= \begin{pmatrix} A & B \\ fractionReduce(A*D,B) & D \end{pmatrix} defines a system y' = A \cdot y.

Determine the entry {\color{red}X} such that {\color{orange}y_{\infty}} = \begin{pmatrix} {\color{red}X} \\ Y \end{pmatrix} is a steady state of the system.

b \color{red} X = - B/A * Y

We seek a solution \color{orange}y_{\infty} with \color{orange}y_{\infty}' = 0, i.e. the entry {\color{red}X} in {\color{orange}y_{\infty}}= \begin{pmatrix} {\color{red}X} \\ Y \end{pmatrix} satisfying A\cdot {\color{orange}y_{\infty}} = \begin{pmatrix} A & B \\ fractionReduce(A*D,B) & D \end{pmatrix} \cdot \begin{pmatrix} {\color{red}X} \\ Y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} .

We compute \begin{pmatrix} A & B \\ fractionReduce(A*D,B) & D \end{pmatrix} \cdot \begin{pmatrix} {\color{red}X} \\ Y \end{pmatrix} = \begin{pmatrix} negParens(A) \cdot {\color{red}X} + negParens(B) \cdot negParens(Y) \\ negParens(fractionReduce(A*D,B)) \cdot {\color{red}X} + negParens(D) \cdot negParens(Y) \end{pmatrix} = \begin{pmatrix} negParens(A) \cdot {\color{red}X} + B *Y \\ negParens(fractionReduce(A*D,B)) \cdot {\color{red}X} + D *Y \end{pmatrix}.

Both coordinates are zero for {\color{red}X} = fractionReduce(- B*Y,A).