de-CH
utf-8
math math-format
Linear System with Defined Steady State
linsys-01-02b
multiple
57344
randRangeNonZero(-8,8) randRangeNonZero(-8,8) randRangeNonZero(-8,8) randRangeExclude(-8,8,[0,A]) -D*Y/X -A*X/Y

The matrix A= \begin{pmatrix} A & {\color{red}b} \\ {\color{teal}c} & D \end{pmatrix} defines a system y' = A \cdot y.

Determine entries {\color{red}b} and {\color{teal}c} such that {\color{orange}y_{\infty}}= \begin{pmatrix} X \\ Y \end{pmatrix} is a steady state of the system.

b \color{red} b = B
c \color{teal} c = C

We seek a solution \color{orange}y_{\infty} with \color{orange}y_{\infty}' = 0, i.e. {\color{red}b} and {\color{teal}c} with A\cdot {\color{orange}y_{\infty}} = \begin{pmatrix} A & {\color{red}b} \\ {\color{teal}c} & D \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \end{pmatrix} = {\color{blue} \begin{pmatrix} 0 \\ 0 \end{pmatrix}} .

We compute \begin{pmatrix} A & {\color{red}b} \\ {\color{teal}c} & D \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} negParens(A) \cdot negParens(X) + {\color{red}b} \cdot negParens(Y) \\ {\color{teal}c} \cdot negParens(X) + negParens(D) \cdot negParens(Y) \end{pmatrix} = {\color{blue} \begin{pmatrix} A*X \cdot + negParens(Y) \cdot {\color{red}b} \\ negParens(X) \cdot {\color{teal}c} + D *Y \end{pmatrix} }.

Thus we get:

{\color{red}b} = fractionReduce(- A*X,Y) and {\color{teal}c} = fractionReduce(- D*Y,X).