de-CH
utf-8
math math-format
Matrix-Vector Iteration
mvit-01-01
multiple
163840
randRange(1,4) randRange(1,5) randRange(0,1) pow(-1,SN)*N/(N+K) randRangeNonZero(-8,-8) BZ/(N+K) fractionReduce(BZ,N+K) L1-2*BN fractionReduce(pow(-1,SN)*N-2*BZ,N+K) randRangeNonZero(-8,8) 2*AN+4*BN-2*D fractionReduce(2*(pow(-1,SN)*N-2*BZ)+4*(BZ)-2*D*(N+K),N+K) randRangeNonZero(-8,8)

Given a sequence of vectors \left(v_n \right)_n with v_{n+1} =A \cdot v_n and A = \begin{pmatrix} A & B\\ C & D \end{pmatrix}.

Determine the entry {\color{red}y} such that the sequence with initial vector {\color{orange}v_0} = \begin{pmatrix} X \\ {\color{red}y} \end{pmatrix} converges to the zero vector.

a \color{red} y = 2 * X

The matrix has an eigenvalue {\color{blue}\lambda} with |{\color{blue}\lambda}| < 1 .

It's {\color{blue}\lambda}= fractionReduce(pow(-1,SN)*N,N+K).

We are looking for {\color{red}y} with v_1 = A \cdot {\color{orange}v_0} = {\color{blue}\lambda} {\color{orange}v_0},

i.e. the initial vector {\color{orange}v_0} is an eigenvector for the eigenvalue {\color{blue}\lambda} = fractionReduce(pow(-1,SN)*N,N+K).

Then further v_n = A^n \cdot {\color{orange}v_0} = {\color{blue}\lambda}^n {\color{orange}v_0} and with |{\color{blue}\lambda}| < 1 the sequence of numbers converges \left({\color{blue}\lambda}^n \right)_n to zero.

We calculate \begin{pmatrix} A & B\\ C & D \end{pmatrix} \cdot \begin{pmatrix} X \\ {\color{red}y} \end{pmatrix} =\begin{pmatrix} negParens(A) \cdot negParens(X) + negParens(B) \cdot {\color{red}y} \\ negParens(C) \cdot negParens(X) + negParens(D) \cdot {\color{red}y} \end{pmatrix} = \begin{pmatrix} negParens(fractionReduce(X*(pow(-1,SN)*N-2*BZ),N+K)) + negParens(B) \cdot {\color{red}y} \\ negParens(fractionReduce(X*(2*(pow(-1,SN)*N-2*BZ)+4*(BZ)-2*D*(N+K)),N+K)) + negParens(D) \cdot {\color{red}y} \end{pmatrix}

and try to find {\color{red}y} with \begin{pmatrix} negParens(fractionReduce(X*(pow(-1,SN)*N-2*BZ),N+K)) + negParens(B) \cdot {\color{red}y} \\ negParens(fractionReduce(X*(2*(pow(-1,SN)*N-2*BZ)+4*(BZ)-2*D*(N+K)),N+K)) + negParens(D) \cdot {\color{red}y} \end{pmatrix} = {\color{blue}negParens(fractionReduce(pow(-1,SN)*N,N+K))} \cdot \begin{pmatrix} X \\ {\color{red}y} \end{pmatrix}.

Using the first row negParens(fractionReduce(X*(pow(-1,SN)*N-2*BZ),N+K)) + negParens(B) \cdot {\color{red}y} = fractionReduce(X*pow(-1,SN)*N,N+K) we get {\color{red}y} = 2*X .

Thus, for n \to \infty we get for the coordinates of the vectors v_n = \begin{pmatrix} \left(fractionReduce(pow(-1,SN)*N,N+K)\right)^n \cdot negParens(X) \\ \left(fractionReduce(pow(-1,SN)*N,N+K)\right)^n \cdot negParens(2*X)\end{pmatrix} \to \begin{pmatrix} 0 \\ 0 \end{pmatrix}.