de-CH
utf-8
math math-format
Fixed Points of a Nonlinear System
non-linsys-01-01
set
90
randRange(2,12) randRangeExclude(2,12,[A])

The vector field F: \mathbb R^2 \to \mathbb R^2, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}\mapsto \begin{pmatrix} y_1^2 - y_2^2 \\ Ay_1 + By_1 y_2 \end{pmatrix} defines a system y' = F(y).

Determine the fixed points y_{\infty} = \left({\color{red}y_{\infty,1}},{\color{blue}y_{\infty,2}}\right) \neq (0,0).

-A/B
-A/B
A/B
-A/B
{\color{red}y_{\infty,1}} =
{\color{blue}y_{\infty,2}} =
{\color{red}y_{\infty,1}} =
{\color{blue}y_{\infty,2}}=

The fixed points are the solutions to the equation F(y) =\begin{pmatrix} 0 \\ 0 \end{pmatrix}.

The first equation is y_1^2 - y_2^2 = (y_1 - y_2) (y_1 + y_2) = 0 and therefore y_1 = \pm y_2.

The second equation is written 0= Ay_1 + By_1 y_2 = Ay_1 (1 + fractionReduce(B,A) y_2) and with y_1 \neq 0 follows y_2 = fractionReduce(-A,B).

Thus, we have two fixed points \displaystyle y_{\infty} = \left({\color{red}y_{\infty,1}},{\color{blue}y_{\infty,2}}\right) = \left(\mp fractionReduce(A,B), fractionReduce(-A,B)\right).